VDI-Fachtagung Messunsicherheit praxisgerecht bestimmen – Prüfprozesse in der industriellen Praxis 2023 14. und 15. November 2023 in Erfurt

Messunsicherheitsbilanzen für die Koordinatenmesstechnik

Dr.-Ing. Michael Hernla, Dortmund

DR.-ING.

MICHAFI HFRNIA

Inhalt

- 1. Einführung
- 2. Messunsicherheit
- 3. MU-Bilanzen für taktile Messungen
- 4. KMG mit Bildverarbeitung
- 5. Multisensor-KMG
- 6. Optische Koordinatenmesssysteme
- 7. Computertomografie
- 8. Korrelationen an Geometrieelementen
- 9. Korrelationen zwischen Geometrieelementen
- 10. Lösung mit Simulation
- 11. Weiteres Beispiel

DR.-ING.

MICHAEL HERNLA

12. Zusammenfassung

1. Einführung – Gerätetechnik

- Industrielle Koordinatenmesstechnik seit ca. 50
 Jahren
- Lineare Bewegungsachsen, Längenmesssysteme, starre Taster, Tischrechner mit Software
- Erfassung von Oberflächenpunkten und Zuordnung von geometrischen Elementen
- Auswertung von geometrischen Größen Maß, Form, Lage

DR.-ING.

Einführung – Normung

- Richtlinien der Reihe VDI/VDE 2617 zur Prüfung von taktilen Koordinatenmessgeräten (KMG) ab ca. 1985
- Normenreihe ISO 10360 ab ca. 1992
- Zusätzlich optische Sensoren, optische Koordinatenmesssysteme, Computertomografie
- Gleiche Kenngrößen, Normale und Prüfverfahren
- Längenmessabweichung f
 ür die Geometrie im Messvolumen
- Antastabweichungen für Taster und Sensoren

DR.-ING.

2. Messunsicherheit – Simulation

- VDI/VDE 2617 Blatt 7 bzw. ISO/TS 15530-4
- PTB-Software Virtuelles KMG (VCMM) von Zeiss und Leitz (Hexagon)
- Messreihen zur Ermittlung der Geometrieabweichungen des KMG und der Antastabweichungen
- Modellierung des kompletten Messprozesses mit Variation aller Eingangsgrößen
- Erweiterte Messunsicherheiten aus den Häufigkeitsverteilungen der Messgrößen

Messunsicherheit mit kalibrierten Werkstücken

- VDI/VDE 2617 Blatt 8 bzw. ISO 15530-3
- Kalibriertes Werkstück mit Messreihe unter Vergleichbedingungen (Temperatur, Formabweichungen)
- Standardabweichung und systematische Abweichung
- Bei Maßen korrigiert
- Sonst Bestandteil der Messunsicherheit
- Einfluss der Formabweichung aus Messreihe

Messunsicherheitsbilanzen

- VDI/VDE 2617 Blatt 11
- Mathematische Modelle für jedes Prüfmerkmal bzw. jede Gruppe von Prüfmerkmalen
- Fallunterscheidungen für Geometrieelemente und ihre Parameter, Taster und Messbedingungen
- Grenzwerte der Längenmess- und der Antastabweichungen des KMG
- Anzahl und Lage der Messpunkte, Standardabweichungen an Geometrieelementen, Temperaturen

3. Messunsicherheit – taktile Messungen

- VDI/VDE 2617 Blatt 11 mit Voraussetzungen und Anwendungen der Methode
- Beispiele Durchmesser und Abstand
- Vergleiche zwischen drei Methoden veröffentlicht [4]
- Unsicherheiten aus Bilanz meist größer wegen Grenzwerten statt tatsächlicher Abweichungen
- Ringvergleich auf VDI-Fachtagung 2021 [5]

Weitere MU-Bilanzen

- Hernla: Messunsicherheit bei Koordinatenmessungen.
 expert verlag Tübingen 2020 [6]
- Mathematische Modelle, Eingangsgrößen, Standardunsicherheiten, Sensitivitätskoeffizienten
- Umsetzung in Tabellenkalkulationsprogrammen f
 ür Durchmesser, Abstand, Position, Symmetrie, Koaxialit
 ät, Richtung und Winkel, Form
- Detaillierte Verifikation im Einzelfall anhand der Dokumentation möglich

DR.-ING.

Akkreditierung

- Akkreditierung von Prüf- und Kalibrierlaboratorien nach DAkkS 71 SD 5 004 [7] (bzw. SAS ...)
- Voraussetzung: Anwendung einer der drei Methoden zur Ermittlung der Messunsicherheit
- Akkreditierte Kalibrierlaboratorien mit MU-Bilanzen in Deutschland 8, Schweiz 3
- Akkreditierte Prüflaboratorien mit MU-Bilanzen in Deutschland 25, Schweiz 4, Österreich 1

Weitere Sensoren und Bauformen

- KMG mit Bildverarbeitung
- Multisensor-KMG
- Optische Koordinatenmesssysteme
- Röntgen-Computertomografie
- Gelenkarm-KMG

DR.-ING.

Beispiel taktile Messung

Abstand von zwei Elementen – Modellfunktion

$$L = [X_{1} - W_{11} + L_{N11} / L_{M11} - W_{12} + L_{N12} / L_{M12} - X_{T1} - (D_{T1} - D_{C})/2]$$

-[X_{2} - W_{21} + L_{N21} / L_{M21} - W_{22} + L_{N22} / L_{M22} - X_{T2} - (D_{T2} - D_{C})/2]
-\Delta X_{TR} - \Delta L_{KMG} - L_{NA} + [\alpha_{W} + (t_{W} - 20^{\circ}C) - \alpha_{M} + (t_{M} - 20^{\circ}C)] + \Delta L_{TK}

X ₁ , X ₂	Element-Koordinaten
W ₁ , W ₂	Winkel (bei Achsen, Geraden, Ebenen)
X _{Т1,2} , D_{Т1,2}	Taster-Koordinaten und -Durchmesser
$D_{\rm C}$	Kugelnormal-Durchmesser
ΔX_{TR}	Mehrfachtaster-Lageabweichung
ΔL_{KMG}	Geometrieabweichungen
ΔL_{T}	Temperatureinfluss

DR.-ING.

Messunsicherheitsbilanz

	Metho-	Messpunkt-	Standard-	Faktor für	Sensi-	Unsicher-
Eingangs-	de bzw.	anzahl bzw.	abweichung	Punktzahl /	tivitäts-	heitsbeitrag
größe	Anzahl	Verteilung	bzw. Grenze	Verteilung	koeffizient	(µm)
X_i	m	n,	s, bzw. a,	b,	Ci	$u_i(y)$
XE	В	8	5	0,35	1	1,8
W_{E1}	В	8	5	0,71	0,6	2,2
W_{E2}	В	8	5	0,71	0,6	2,2
X _{TE}	В	5	2	0,71	1	1,4
DTE	В	5	2	1,00	0,5	1,0
XB	В	8	5	0,35	1	1,8
W_{B1}	В	8	5	1,08	0,5	2,9
W_{B2}	В	8	5	1,08	0,5	2,9
X _{TB}	В	5	2	0,71	1	1,4
D _{тв}	В	5	2	1,00	0,5	1,0
D _c	В	Normal	0,4	0,50	0,5	0,1
ΔX_{TR}	В	Normal	1,1	0,50	1	0,6
$\Delta L_{\rm KMG}$	В	Normal	2,3	0,50	1	1,1
α_{M}	В	Rechteck	1,6	0,58	0,0	0,0
α_{W}	В	Rechteck	2,4	0,58	0,9	1,2
t _M	В	Rechteck	2,0	0,58	3,6	4,2
t w	В	Rechteck	2,0	0,58	5,4	6,2
ΔL_{TK}	В	Syst. Abw.	10,8	1	1	10,8
		Standardu	nsicherheit dei	u(y) =	14,6	
			Erweite	<i>k</i> =	2,00	
		Erweiterte N	Aessunsicherh	U =	29,3	

DR.-ING. MICHAEL HERNLA

Vereinfachte Modelle – taktile Messung

 $L = X_2 - D_{T_2}/2 - (X_1 + D_{T_1}/2) - \Delta X_{TR} \qquad L = X_2 - D_{T_2}/2 - (X_1 - D_{T_1}/2) - \Delta X_{TR}$

Derselbe Taster: $D_{T1} = D_{T2} = D_T$

$$L = X_2 - X_1 - D_T$$
 $L = X_2 - X_1$

DR.-ING. MICHAEL HERNLA

MU-Bilanzen für die KMT

Bild 13

4. KMG mit Bildverarbeitung – 1

Kanten mit Hell-Dunkel-Übergang

Definition der Messgröße – Maß bzw. Abstand

DR.-ING.

MICHAEL HERNLA

MU-Bilanzen für die KMT

Bild 14

KMG mit Bildverarbeitung – 2

Beispiel: Definition der Messebene beim Plasmaschneiden

ISO 9013 Thermisches Schneiden – Einteilung thermischer Schnitte – Geometrische Produktspezifikation und Qualität

abhängig von Blechdicke s

DR.-ING. MICHAEL HERNLA MU-Bilanzen für die KMT Bild 15

KMG mit Bildverarbeitung – 3

 $L = X_2 - \Delta M_2/2 - (X_1 + \Delta M_1/2) \qquad L = X_2 - \Delta M_2/2 - (X_1 - \Delta M_1/2)$

Dieselbe Maßdifferenz: $\Delta M_1 = \Delta M_2 = \Delta M$

$$L = X_2 - X_1 - \Delta M \qquad \qquad L = X_2 - X_1$$

MICHAEL HERNLA MU-Bilanzen für die KMT

DR.-ING.

Bild 16

5. Multisensor-KMG – 1

- Mehrere Sensoren optisch und taktil
- Kanteneffekte wie bei Bildverarbeitung

DR.-ING.

MICHAEL HERNLA

• Zusätzlich Multisensor-Lageabweichung ΔX_{PLM} der Sensoren zueinander

Multisensor-KMG – 2

 $L = X_2 - \Delta M_2 / 2 - (X_1 + \Delta M_1 / 2) - \Delta X_{\text{PLM}} \qquad L = X_2 - \Delta M_2 / 2 - (X_1 - \Delta M_1 / 2) - \Delta X_{\text{PLM}}$

Sensor und Maßdifferenz dieselben: $\Delta M_1 = \Delta M_2 = \Delta M$

DR.-ING.

$$L = X_2 - X_1 - \Delta M \qquad \qquad L = X_2 - X_1$$

MICHAEL HERNLA MU-Bilanzen für die KMT Bild 18

6. Optische Koordinatenmesssysteme – 1

- Streifenlichtprojektion
- Zwei Digitalkameras
- Mehrere Ansichten
- Räumliches Datenmodell
- Direkter Vergleich mit CAD-Modell
- Auch einzelne Prüfmerkmale
- Keine Taster
- Aufgesprühte Pulverschicht
- Mittlere Schichtdicke ∆X_P und Streuung

DR.-ING. MICHAEL HERNLA

MU-Bilanzen für die KMT

Bild 19

Optische Koordinatenmesssysteme – 2

 $L = X_2 - \Delta X_{P2} - (X_1 + \Delta X_{P1}) \qquad L = X_2 - \Delta X_{P2} - (X_1 - \Delta X_{P1})$

Beide Oberflächen eingesprüht: $\Delta X_{P1} = \Delta X_{P2} = \Delta X_P$

$$L = X_2 - X_1 - 2 * \Delta X_P$$
 $L = X_2 - X_1$

DR.-ING. MICHAEL HERNLA

MU-Bilanzen für die KMT

Bild 20

Optische Koordinatenmesssysteme – 3

- Grenzwert der Längenmessabweichung als Maximalwert im Messvolumen
- Große Unsicherheitsbeiträge für Geometrieabweichungen bei kleinen Abmessungen
- ISO 10360-13 Optische 3D-Koordinatenmesssysteme
 → Grenzwert der Verzerrungsabweichung
- Normal und Messobjekt (bzw. Geometrieelement) passen in eine Ansicht
- Anwender: Grenzwert bei 1/5

DR.-ING.

7. Computertomografie – 1

- Vergößerung bzw. Auflösung hängt von Position der Drehachse ab
- Temperaturbedingte Ausdehnung des Detektors im Verhältnis des Abstandes // L

Computertomografie – 2

- Ermittlung der Messunsicherheit nach VDI/VDE 2630 Blatt 2.1 [11] Methode mit kalibrierten Werkstücken
- Nicht immer verfügbar, Messreihe zeitaufwendig
- Deshalb Messunsicherheitsbilanzen nach VDI/VDE 2617 Blatt 11
- Ohne Taster, Maß- bzw. Lageabweichungen, Pulverschicht
- Mit Standardabweichungen an den Geometrieelementen

DR.-ING.

Computertomografie – Messunsicherheitsbilanz

	Metho-	Messpunkt-	Standard-	Faktor für	Sensi-	Unsicher-
Eingangs-	de bzw.	anzahl bzw.	abweichung	Punktzahl /	tivitäts-	heitsbeitrag
größe	Anzahl	Verteilung	bzw. Grenze	Verteilung	koeffizient	(µm)
X_i	m_i	n i	si bzw. ai	b _i	Ci	$U_i(\mathbf{y})$
X _E	В	8	4	0,35	1	1,4
W_{E1}	В	8	4	0,71	0,6	1,8
W_{E2}	В	8	4	0,71	0,6	1,8
X _B	В	8	4	0,35	1	1,4
W_{B1}	В	8	4	1,08	0,5	2,3
W_{B2}	В	8	4	0,71	0,5	1,5
$\Delta L_{\rm KMG}$	В	Normal	6,0	0,50	1	3,0
α_{M}	В	Rechteck	0,3	0,58	0,0	0,0
α_{W}	В	Rechteck	9,4	0,58	0,9	4,9
t _M	В	Rechteck	2,0	0,58	0,6	0,7
t _W	В	Rechteck	2,0	0,58	21,2	24,4
ΔL_{TK}	В	Syst. Abw.	42,3	1	1	42,3
	Standardunsicherheit der Messgröße:					49,4
			<i>k</i> =	2,00		
Erweiterte Messunsicherheit (P=95%):					U =	98,7

Akkreditierte Laboratorien

- Akkreditierung von Prüf- und Kalibrierlaboratorien nach DAkkS 71 SD 5 004 [7] (bzw. SAS ...)
- Prüflabore Computertomografie: 9
- Prüflabore Streifenlichtprojektion: 8
- Prüflabor Bildverarbeitung: 1

DR.-ING.

MICHAEL HERNLA

• Kalibrierlabor Bildverarbeitung: 1

8. Korrelation an Geometrieelementen – 1

- Messunsicherheitsbilanzen meist ohne Korrelationen zwischen den Eingangsgrößen
- Messpunkte gleichmäßig über die Oberfläche verteilt
- Gegenbeispiel Messung eines Kreisausschnitts Korrelationen zwischen Element-Parametern
- Standardunsicherheiten aus Kovarianzmatrix
- GUM Supplement 2 Abschnitt 6.3.1 Implizite mehrdimensionale Messmodelle

DR.-ING.

Korrelation an Geometrieelementen – 2

Verhältnisse der Unsicherheiten in Abhängigkeit vom Zentriwinkel des Bereiches der Messpunkte, bezogen auf den Vollkreis (100 Punkte)

DR.-ING.

MICHAEL HERNLA

9. Korrelation zwischen Geometrieelementen – 1

Schnittpunkte aus Gerade und zwei Kreisen nicht korreliert

Schnittpunkte aus Gerade und Kreis korreliert

Korrelation zwischen Geometrieelementen – 2

Abstand der Schnittpunkte – vereinfachte Modelle:

Zwei Kreise

Ein Kreis

 $L = X_{M2} - R_2 - (X_{M1} + R_1) \qquad \qquad L = X_{M1} + R_1 - (X_{M1} - R_1) = D_1$

Messunsicherheiten:

mit $u_R = \sqrt{\frac{1}{n}} \cdot s$ und $u_{XM} = \sqrt{\frac{2}{n}} \cdot s$ mit $u_D = \sqrt{\frac{4}{n}} \cdot s$ und n = 4 $u_{L2} = 1,22 * s$ $u_{L1} = 1,00 * s$

Verhältnis u_{L2} : u_{L1} = 1,22 unabhängig von der Messpunktanzahl n

DR.-ING. MICHAEL HERNLA MU-Bilanzen für die KMT Bild 29

Korrelation zwischen Geometrieelementen – 3

- Streuungsellipsen der Schnittpunkte miteinander korreliert
- GUM Supplement 2 Abschnitt 6.2.1 Explizite mehrdimensionale Messmodelle
- Kovarianzmatrizen der Schnittpunkte und des Abstands

10. Lösung mittels Simulation – 1

- GUM Supplement 2 Abschnitt 6.4 Messunsicherheit mittels Simulation
- Realisiert im Virtuellen KMG (VCMM)
- Auch mit Modellen der Messunsicherheitsbilanzen
- Anpassung: Schnittpunkte der Geraden mit demselben Kreis
- Beispiel mit verschiedenen Winkeln und Verhältnissen der Unsicherheiten mit und ohne Korrelation

Lösung mittels Simulation – 2

Verhältnis V der

Standardabweichung s_{X12} mit Korrelation aus der Simulation zur Standardunsicherheit u_{X12} ohne Korrelation aus der Unsicherheitsbilanz

DR.-ING.

MICHAEL HERNLA

MU-Bilanzen für die KMT

Bild 32

11. Weiteres Beispiel – 1

Abstand der Schnittpunkte von zwei Kreisen -

Streuungsellipsen der Schnittpunkte miteinander korreliert

DR.-ING.

MICHAEL HERNLA

Weiteres Beispiel – 2

Verhältnis V der Standardabweichung s_{X12} mit Korrelation aus Simulation zur Standardunsicherheit aus MU-Bilanz u_{X12} ohne Korrelation

DR.-ING.

MICHAEL HERNLA

Weiteres Beispiel – 3

- Vollständige Messunsicherheitsbilanz mit weiteren
 Unsicherheitsbeiträgen
- Beitrag der Korrelation wird relativ kleiner ab wann vernachlässigbar?
- Test mit maximalem Verhältnis $V = s_{X12} / u_{X12} \dots$
- ... und Q als Grenzwert f
 ür maximales Verh
 ältnis von s(y) mit Korrelation zu u(y) ohne Korrelation:

$$u_{X12} \le \sqrt{\frac{Q^2 - 1}{V^2 - 1}} \cdot u(y)$$
 mit $u_{X12} = \sqrt{u_{X1}^2 + u_{X2}^2}$

DR.-ING.

MICHAEL HERNLA

Weiteres Beispiel – 4

- Beispiel: Bei Q = 1,05 ist s(y) aus der Simulation maximal 5 % größer als u(y) aus der MU-Bilanz
- Bei größtem Verhältnis V = 1,414 maximaler Unsicherheitsbeitrag $u_{X12} = 0,32 u(y)$
- Bei Winkel 45° Verhältnis V = 1,20 und maximaler Unsicherheitsbeitrag $u_{X12} = 0,48 u(y)$
- Ist u_{X12} kleiner, kann die Simulation entfallen
- Simulation erst, wenn u_{X12} größer als der Testwert

12. Zusammenfassung

- Einfache Anpassung der Messunsicherheitsbilanzen an die jeweiligen Messprinzipien und Sensoren
- Umsetzung Hersteller- und geräteunabhängig durch Tabellenkalkulation mit minimalem Aufwand
- Simulation mit mathematischen Modellen für Verteilung der Messgröße und Erweiterungsfaktor
- Berücksichtigung der Korrelation durch Anpassung der Modelle, ...
- ... wenn nach Test nicht vernachlässigbar

DR.-ING.

Vielen Dank für Ihre Aufmerksamkeit

